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Answer ALL questions.

I. a) i) Define Mobius function and Euler function

      ii) Prove that 
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                                                          Or

      iii) Prove that log n =
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   b) i) Prove that the set of all arithmetical functions f with f(1)≠0 forms an abelian group 

        with respect to Dirichlet product 
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, the identity element being the function I.

                                                            Or

      ii) Let f be multiplicative. Then prove that f is completely multiplicative if and only if

         f
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      iii) If f is multiplicative then prove that
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II. a) i) State and prove Euler’s summation formula.

                                                            Or

         ii) Prove that 
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where C is Euler’s constant.        (5)

    b) i) State and prove weak and strong versions of Dirichlet asymptotic formulae for 

            the partial sums of the divisor function d(n).

                                                           Or

        ii) )  State and prove Asymptotic formulae for the partial sums of divisor functions     
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III. a) i)  An integer n>0 is divisible by 9 if and only if the sum of its digits in its decimal

               expansion is divisible by 9. Prove this using congruences.

                                                            Or

          ii) If ac
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and if d= (m,c), then prove that a≡b
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       b) i) State and prove Lagrange’s theorem.

           ii) For any prime p prove that all the coefficients of the polynomial 

                f(x)=(x-1)(x-2)(x-3)…………(x-p+1)-x
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 EMBED Equation.3  [image: image15.wmf]1

-

+1 are divisible by p.       (10+5)

                                                            Or

         iii) If (a,m)=1, prove that  the solution of the linear congruence ax≡b (mod m) is 

               is given by x≡ba
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         iv) State and prove Chinese remainder theorem.                                         (6+9)

IV. a) i) Let p be an odd prime. Then for all n prove that
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                                                    Or

          ii) Prove that Legendre’s symbol (
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) is a completely multiplicative 

      function of n.                                                                                     (5)

     b) i) For every odd prime p, Prove that 
[image: image19.wmf]2

/

)

1

(

)

1

(

1

-

-

=

÷

ø

ö

ç

è

æ

-

p

p

 and 

                
[image: image20.wmf]8

/

)

1

(

2

)

1

(

2

-

-

=

÷

ø

ö

ç

è

æ

p

p

.

           ii) State and prove Gauss’ Lemma.                                                      (7+8)                                                     

                                                                    Or

          iii) State and prove Quadratic reciprocity law. Use it  to determine those odd 

                primes p for which 3 is a quadratic residue and those for which it is a 

                nonresidue                                                                                      (15)

  V. a) i) Evaluate 
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where P is an odd positive integer.

                                                                    Or

          ii) Determine whether 888 is a quadratic residue or nonresidue of the prime 1999.

 b) i) Prove that for 
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,where p(0)=1 and 

        p(n) is the partition function.

                                                             Or

     ii) State and prove Euler’s pentagonal-number theorem.                   (15)

_____________________
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